Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles.
نویسندگان
چکیده
In the most widely accepted version of the cisternal maturation/progression model of intra-Golgi transport, the polarity of the Golgi complex is maintained by retrograde transport of Golgi enzymes in COPI-coated vesicles. By analyzing enzyme localization in relation to the three-dimensional ultrastructure of the Golgi complex, we now observe that Golgi enzymes are depleted in COPI-coated buds and 50- to 60-nm COPI-dependent vesicles in a variety of different cell types. Instead, we find that Golgi enzymes are concentrated in the perforated zones of cisternal rims both in vivo and in a cell-free system. This lateral segregation of Golgi enzymes is detectable in some stacks during steady-state transport, but it was significantly prominent after blocking endoplasmic reticulum-to-Golgi transport. Delivery of transport carriers to the Golgi after the release of a transport block leads to a diminution in Golgi enzyme concentrations in perforated zones of cisternae. The exclusion of Golgi enzymes from COPI vesicles and their transport-dependent accumulation in perforated zones argues against the current vesicle-mediated version of the cisternal maturation/progression model.
منابع مشابه
A cisternal maturation mechanism can explain the asymmetry of the Golgi stack.
Morphological data suggest that Golgi cisternae form at the cis-face of the stack and then progressively mature into trans-cisternae. However, other studies indicate that COPI vesicles transport material between Golgi cisternae. These two observations can be reconciled by assuming that cisternae carry secretory cargo through the stack in the anterograde direction, while COPI vesicles transport ...
متن کاملCOPI is essential for Golgi cisternal maturation and dynamics
Proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi and then sorted to their destinations. For their passage through the Golgi, one widely accepted mechanism is cisternal maturation. Cisternal maturation is fulfilled by the retrograde transport of Golgi-resident proteins from later to earlier cisternae, and candidate carriers for this retrograde transport are coa...
متن کاملIdentification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi.
Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combinat...
متن کاملInter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes
A core prediction of the vesicular transport model is that COPI vesicles are responsible for trafficking anterograde cargoes forward. In this study, we test this prediction by examining the properties and requirements of inter-Golgi transport within fused cells, which requires mobile carriers in order for exchange of constituents to occur. We report that both small soluble and membrane-bound se...
متن کاملVesicles on strings: morphological evidence for processive transport within the Golgi stack.
Cis-Golgi cisternae have a higher freeze-fracture particle density than trans-cisternae. Transport vesicles neighboring cis or trans positions of the Golgi stack have a particle concentration comparable to that of the adjacent cisterna and the buds emerging from it. This implies that transport vesicles remain locally within the stack during their lifetime, near their origin, favoring a processi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2004